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Preface 

This thesis presents an analysis of the distribution of residues generated by the *'*-order 

linear       homogeneous      recurrence      yn+k - <**.!?„•*.! + ••• + c^mod pa       when 

xA-aA.,x*"1 a0 is a primitive polynomial in Zp[xl   It is shown that for tik the 

tuples of t consecutive residues are equidistributed in t dimensions in the limit asa-t», 

subject only to a much weaker condition on the distribution of the residues. When 

specialized to \aAs 1, the recurrence is the basis for a computer random number generator 

which can be efficiently implemented directly in floating-point arithmetic with no 

multiplication and little machine dependence. The results of empirical tests comparing 

generators of this type with standard linear congruentia! generators are also presented. 
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Maas for developing the typographical software, and my friends, colleagues, and relatives 

for their emotional support. The Graduate Fellowship Program of the National Science 

Foundation provided financial support. 
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Knuth. And I am particularly fortunate to count among my teachers two of the best: my 

parents, Bil and Marleen Reiser. 
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Introduction 

CHAPTER 1 

Introduction 

Let a and Jk be positive integers and let p be a prime. Let/(x) - xk-ak_ix
k~1 a0 be 

a primitive polynomial in Zp[x). In other words, the residue classes modulo fix) of the 

polynomial ring Z [x] form a finite field in which x is a generator of the multiplicative 

group. Consider the k'^-order linear homogeneous recurrence 

*„•* - aA-iJWi + • •+a0y„moipa (1.1) 

for n - 0, 1,2, ... and initial values (y^ ..., jA_,) * (0, ..., 0) mod ^. The sequence of 

fractions <yjpa> is a candidate for a pseudo-random sequence. If a - I then the length 

of the period of <yn> is pk-l, and if a > ' (he length of the period is £a"e(£*-l), where c is 

easy to compute and is often equal t '..-ccrrences of type (I.I) with or - Jk - I and targe 

p, or with Jk - I, p - 2, and moderately >.rge a, are the basis for some of the most 

acceptable and widely used computer random number generators [Knuth69l Such 

generators have |a0|> I and require that a multiplication modulo pa be performed. 

Multiplication can be replaced by addition and subtraction if |a^|s I; of course then k must 

be greater than I. Experimental evidence has been accumulating to the effect that 

recurrences of type (I.I) with p - 2 and moderately large a and k are quite successful. (See 

[Knuth69] p. 464 and [Brent73] pp. 163-164; also [Green59] and [Franklin64l) However, 

theoretical Justification for such success has been lacking. We will show that recurrences of 

type (I.I) are indeed excellent random number generators by showing that for t&k the 

r-tuples of consecutive residues become equidistributed in t dimensions in the limit as 

a -» «, subject only to a much weaker condition on the distribution of the residues. 

In the remainder of this chapter we shall discuss known results on the length of the period 

of sequences of type (I.I).    Chapter 2 defines discrepancy, a means of measuring 

 -•••• r u._~~tt 
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equidistribution, and presents a formula of Harald Niederreiter which expresses the 

discrepancy in terms of an exponential sum. In Chapter 3, exponential sums are used to 

reduce the question of equidistribution of sequences of type (1.1) to a much weaker 

distribution criterion, and in Chapter 4 the sequences are analyzed with respect to this 

criterion. It is believed that the analysis of Chapters 3 and 4 is new. Chapter 5 considers 

implementation details and gives the results of empirical tests comparing higher order 

linear congruential generators of type (i.l) with standard linear congruential generators 

yn*\*ayn+bmo,iPa- 

The simplest example of a sequence satisfying (1.1) with *> I is the Fibonacci sequence 

with p - 2 and initial conditions (y0, j.) - (0, 1). The recurrence is ^»F^j + F,,, 

corresponding to the primitive polynomial x -x-l - x +x+l in Z2[x], The period is 

3«2a"! and it is known that the sequence of ordered pairs (2"aFn, 2~aFn+1) becomes 

evenly distributed mod I as a increases. (See [Marsaglia72].) However, the Fibonacci 

sequence is not a suitable random number generator because successive triples are very 

poorly distributed in three dimensions. To achieve satisfactory performance we must 

consider recurrences of higher degree. 

When considering such recurrences it is helpful to know some facts about the length of the 

period and some relationships between sequences satisfying the same linear congruence, but 

with different initial conditions. The papers [Ward 31], [Ward33], and [HallSSa] present 

accounts of the theory for general linear recurrences. The length of the period of 

recurrence (I.l) for a - I can be easily established using an idea from [Hall38a]. 

Lemma 1.1. If/(x) is primitive in Zp[x] then the period of (I.l) for a - 1 is pk~ 1. 

Proof. Corresponding to the it-tuple {y0 J*-i). associate the polynomial 

VW-Jo**''^!-«*-,*))**"2*      +^A-i-aA-i^-a «iJo>- (1-2) 

i-iminn lam- .niMir»iifcn—,^^_^_ ^-im _ ^ .ii_^_^.,„__ 
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Then xY(x) - Jo** + <7r0k-tJo>**", + ''' + <7k-i aiJo>* -  Ji**"1 * <?2-«A-IJ>*"2 

+   • • • +(yk a,j,) (modulo fix)), and this is the polynomial associated with (7,  

yk). Thus iterating the recurrence corresponds to multiplying the associated polynomial by 

x. Since fix) is primitive, x is a generator of the multiplicative group of the finite field 

Zp[x]/(/tx)) and has period pk- I. Thus recurrence (1.1) has period pk~ 1. I 

We will use generating functions and congruences to a double modulus to analyze the 

period and certain other properties of integer sequences satisfying (1.1) when a> 1. The 

notion of congruence to a double modulus is an extension of the usual notion of 

congruence. If f{x), a(x), and b(x) are polynomials with integer coefficients, and if there 

exist polynomials u(x) and v(x) with integer coefficients such that 

a(x) - b(x) + flx)u(x) + mv(x), then we will write a(x) u b(x) (modulo fix) and m), or also 

a(x) = b(x) (modd m,/(*)). The following four lemmas are essentially exercise 9.2.2-11 of 

[Knuth69j. 

Ltnma 1.2. Assume that/(0) is relatively prime to p and that pa>2. If 

xT > I (modd pa,J{x))   and   xT * I (modd pa*\j{x)), 

then 

x* - I (modd pa * \/(x))   and   x* e I (modd pa*z,f{x)). 

Proof. By definition of congruence to a double modulus there exist polynomials u(x), v(x) 

such that xT - \+flx)u(,x)+pav(x). In addition v(x) m 0 (modd />, /(x)), or else 

xT - I +/(x)u(x) + pa{f(x)uz(x) + £»2(x)) - I +/(xXu(x) + A2<*» + pa * xva(x) m 1 (modd 

Pa * \ /(x)), contradicting the assumption about xT (modd £° *\ /(*)). If we raise xT to 

the pth power, the binomial theorem makes it clear that 

x"* - l*pa*iv(x)+p2a*1v2(xXp-l)l2 plus other terms which are congruent to zero 

modulo J[x) and pa**. Since pa>2 we have p***\p-\)l2 m 0 modulo p***, and thus 

x^ • I + pa * Mx) (modd pa * • /(x)).   Suppose that pa * Mx) > 0 (modd y» * • /(x)). 

3 
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Then there exist polynomials o(x), b(x) such that pa**v{x) - a(x)/(x) +pa*2b{x), which 

implies that pa * \v(x) - pb(x)) - a(x)/(x). Since /(0) is relatively prime to p we can apply 

Gauss's lemma about the g.c.d. of the coefficients of the product a{x)f{x) and deduce that 

pa * l divides c(x). This means that v{x) - ^""Wl/W+j^*) s 0 (modd p,/(*)), which 

is a contradiction. Thus pa* lv(x) * 0 (modd pa*z, fix)) and therefore x1* * 1 (modd 

pa*2,flx)).  I 

Using generating functions we will next derive a relationship between period lengths and 

the powers T for which xr s I (modd m,f{x)). Let/(x) - l-a,x- • • • -«Ax*, and let G(x) - 

l//(x) - A0 + Axx + A^c* • • •. Denote by T(m) the length of the period of <AB mod m>. 

Lemma 1.3. T(m) is the least positive integer T such that xT s 1 (modd m,/(x». 

Proo/. Since T(m) is the period of <A„ mod m> we have G(x)-xT(m)G(x) = 

AQ+A^X+A^
2
* ••Ar(m).ix

r(m)'1 (modulo m), which Implies l-xT<m)s 

f{x)(A0+ A^x+ • • + ^T(m)-,
xT(m)",> (modulo m), so I-xT(m) s 0 (modd m,/(x)). This 

shows that T(m)*T, since T was the smallest positive integer such that I -xT B 0 (modd m, 

fix)). Conversely, taking xT- I • 0 (modd m,/(x)) and multiplying by C(x) - Uf[x) gives 

xTG(x)-G(x) s 0 (modulo m). Equating cr-fficients of x gives An-Antr s 0 (modulo m) 

for all niO. Thus T(m)sT. I 

We now restrict our attention to prime power moduli m - pa and show that when a is 

large enough, increasing a by I multiplies not only the modulus but also the period by p. 

Lemma 1.4. If pa > 2 and r(pa) * f{pa *') then T(pa * k) - pkT(pa). 

Proof. It suffices to show that r{pa) * l(pa *') implies that 7{pa *l) - pr{pa) * 7{pa * 2). 

From what we have already shown about the period, we know that r(pa*z) * pr(pa) and 

k 
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that r(pa *') divides pr(pa) but does not divide T(pa). Let T(pa) - p9q with p and g 

relatively prime. Then since 7(pa*y) divides p***q but does not divide p\ it must be 

that T(pa* !) - £•*'<* where d divides f. Since ^'d is a period modulo pa*\ it is 

certainly also a period modulo pa. The smallest period divides all other periods, so p"q 

divides pe**d. Thus q divides d, q - d and T(f>a *') - p7{pa). I 

We have determined the period of <AB mod pa> where An is the coefficient of xB in the 

generating function G{x) - llfix) and fix) - l-a,x- ••• -«Äx*. This sequence <>*n mod 

pa> satisfies (1.1), and we would like to know something about the set of all sequences 

satisfying (1.1).  If C,(x) - J0
+Ji*+ ''' where JH*A " aA-iJn*A-i+ " ' *adfn for aM n2°- 

it    is   easy    to   see   that   fix)G{x)   is   the   polynomial   g(x) -y0 + ^fi~aly0)x+ • • • 

+ (?A-i~ai?A-2"a2?A-3~ '" "*A-i3'<pK    . hence g{x)lfix) is the generating function for 

the sequence with initial values (y0, j, ?*-i)   The next lemma shows that the period 

of <yn mod m> is the same as the period of <An mod m>, in the cases of interest to us. 

Lemma 1.5. Let m - pa. If fix) and g(x) are relatively prime modulo p then the period of 

<yn mod m> equals the period of <An mod m>. In particular, this holds when fix) is 

irreducible and (JQ, ..., JA.,) » (0 0) (modulo p). 

Proof. Assume that T is the period of <y„ mod m>. Then g(x)(\ -xT) m 0 (modd m,/(x)). 

Because fix) and g(x) are relatively prime modulo p, we can apply Hensel's lemma and find 

polynomials a(x) and b(x) such that a(x)fix)+b(x)g(x) s 1 mod m. Multiplying 

gixXl-x1) a 0 (modd m, fix)) by 6(x) gives l-xT s 0 (modd m,fix)), hence the period of 

<yn mod m> is no shorter than the period of <An mod m>. On the other hand it cannot be 

longer, since <yn mod m> is a linear combination of sequences <An4j mod m> for various/ 

If /(x) is irreducible in Zp[x] then /(x) is relatively prime to every nonzero polynomial of 

lower degree, so the period of <yn mod m> will be the same as the period of <An mod m> 

unless g(x) * 0 mod p   This can only happen if all of the initial values {y0,... .yk,t) are 

5 
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divisible by p (again because of Gauss's lemma). I 

The results which have been derived so far about the period may also be derived by 

formulating the recurrence relation (1.1) in terms of a matrix-vector product. This 

alternative formulation is important because actual computation may be easier with the 

matrix than with the polynomials. Let 

0   I   0 
0   0   I 

0   0  0 
aofli a2 

0 
0 

'fc-U 

(1.3) 

where    the    a,    are    the    same    coefficients    as    those    in     (1.1). Define 

2nT " ^fif J*»t' ••' yn*k-0 t0 De tne *-tuP,e of consecutive terms of (1.1) beginning with 

the nth term. It is easy to see that jt, s Aj0 and hence by induction that %n m Anj0 mod 

pa.  By definition of the period T - 7(pa) we have jn s ATj0 mod pa, so 

AT.l*paB (1.4) 

for some matrix B. If p does not divide B then T is not the period mod pa * \ However, 

A** - (I + />aB)p - I + pa * !B + p- Q -p***2 plus other terms divisible by pa * 2. If 

pa > 2 then we see that A"1" s I + pa * !B (modulo pa *2), and we have rederived the fact 

that pr is the period modulo pa*x but not modslo pa*z. We can also note that 

jn+T/p- Jn s 
AT/PJH-J/, S ^* Ha (nwd11'0 Pa)- This says that as the modulus increases 

the difference between vectors a period apart is merely multiplied by p. In the binary case 

p <• 2 this means that the exctusive-or of j„+T/2 and jn gives the same pattern of bits, Just 

shifted one place left as the modulus increases. 

If we consider A/T(or) for j • pa we see that 

..*» • I + ^B mod p act-l (15) 

•->• • — --- - -  • - • —-  
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When Eq. (1.4) is viewed as defining B as > function of a then Eq. (1.5) says that 

B(or) s B(2a) (modulo pul). In other words, as a Increases B converges In the />-adic 

sense. 

! 

-— ~_  — 



Discrepancy and Exponential Sums 

CHAPTER 2 

Discrepancy and Exponential Sums 

In order to make meaningful statements about how well a sequence is distributed it is 

necessary to have a measure of equidistrlbution. Discrepancy is such a measure. Let I be a 

unit interval, and for intervals Jcl let A(J,/V) be the number of n, Osn<N, with yn* J. 

Then the discrepancy of the points y0, .... yN.x is defined as 

Dl^0....jN.i)-^Pi\^r1-M))\ (2.1) 

where X(J) is the measure of J. Thus the discrepancy measures the maximum difference 

between the actual fraction of hits in an interval and the expected fraction of hits. It is 

easy to see that OsDNi I and that the sequences produced by a good random number 

generator should have small discrepancy. Definition 2.1 can be extended naturally to 

define discrepancy for sequences of points yn lying in a multidimensional unit interval I, 

and we shall often use the extended definition. 

Harald Niederreiter has developed an inequality relating the discrepancy to certain 

exponential sums [Niederreiter78]. This Inequality is important because it bounds the 

discrepancy in terms of functions having nice mathematical properties. The properties will 

be exploited when analyzing the discrepancy of linear congruential sequences (1.1). 

Niederreiter's inequality Is easier to state if some notation is introduced. For integers m and 

A define 

1   if A • 0 (mod m) 
r(A,«) - 

m sin n||A/m||   if A * 0 (mod m) 

8 
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Discrepancy and Exponential Sums 

where ||r || is the distance from t to the nearest integer. For lattice points h - (h, ha)t 

Z' we write 

r{hj «) - n r{hj, m). 

The summation  symbol      £      will designate a sum over the complete system  of 
h mod m 

numerically least residues modulo m, consisting of all integers h with - m/2 < A < m/2.   The 
* 

summation symbol     2     refers to the same sum but with h - 0 deleted from the range of 
A mod m 

summation.    The symbols     J)      and      J)      will refer to analogous sums over the 
A mod m h mod m 

complete system of representatives of Zal(mZ)' consisting of all h_ - (A, hj c Z* with 

- m/2 < hj i m/2 for I < j s s, possibly omitting A - (0 0).  The notation x_«y_ represents 

the standard inner product of two vectors. The function «(f) is defined for real values t as 

Lemma 2.1 (Niederreiter's lemma).   Let j0 jw_, be N lattice points in Z*.  Then for 

any integer m 2: 2 the discrepancy DN of the points W* J^,   ... m~x%N_x satisfies 

"-^'.L^^t^M 
Proof.   For i - (*, *,) e Z*. let A(ft;A/) - A<ft, kt;N) be the number of n, 

Osns A/- I, such that jn E * (modulo m), and let ck be the characteristic function of the 

coset k.+(mZ)' of Z'KmZ)'. Then f or x. - (x, x#) i Z* we have 

W    J'\   h.modm "*   A mod m 

Therefore, 

AM /v-i , N-l 

A<i;A0- 2 «*<*»>- ~l2      2    «(AK*»-*)/'")- -1;    2    «(-A*/*) 2« 
Tj-o W   n*0 A mod m *•   A mod m B»0 

and so 

 .-    —    •••--      --••        - •-••• -». — .-J..„..^.-.    ...,.,:,-..,,, • - -.        .••..,...„,        .^- 
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Discrepancy and Exponential Sums 

N        I 
N-l 

*<k,N)-—,*—.   £    «<-A-A/«>2«<A%/»«> 
"*        ••   h mod m 

<2.2) 
•"0 

Now let J - [or,, (9,) x ... x [ar 0a) be an arbitrary half-open subinterval of [0, I)5. 

For each j, \<j<,z, we choose the largest closed subinterval of laJJj) of the form tujm, 

vjn) with integers Ujiv,. The case where for some j no such subinterval of [or * ß.) exists 

can be dealt with easily, since we have then A(J,A/) • 0 and 0j-<*j< —, hence 

|^j^-V(j)|-V(J)<i. (2.3) 

In the remaining case, the integers u,, ..., u^ v,, ...,vM are well defined, and we obtain 

A(J;/V)-A/V<J).        2       (Mk.N)-—t) + —9(vl-ul+l) ••• <»#-u,+ l)-tfV(J) 
A; UjSkjSVj *» *» 

•   A mod m   kj Uj£K,i Vj 

by using (2.2). It follows that 

AM 

n"0 

(t»,-tt,+ l) •••  (V,-U0+ I) 

| ^ir^ - v(j)| < -^ 2   I    S    «MM I JJ 2 «**/•> 
1      " '       m   Amodin 'ktiijSkjSVj '   f        • 

Af-1 

n«0 

, (»,-u^l) •••(».-«.••) _v(j) 

m 

For fixed 4 - (A, A,)«Z* we have 
_ •   |VttJ 

I   s   «<4-4/m)i -1    2    «<A-*M • n S «<vym> 
'*»UJS*JSVJ '        *|0S*JSVJ-UJ J"l 'AJ-0 

Now 
• v.-u 

2   «(*/</« 

if Aj • 0 mod m, and 
'*,- o 

m .vvis«.j(^-n 

-v<j)) 

(2.4) 
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|V,-Ui 

2, #(*//"' " —ransm— - rancrm • Jönm 
'Aj- 0 

m 
"PRÄyJnPTl " |«(A/m)-l|     J<nn||Aym|| " KA,. m) 

If A^ a 0 mod m, and so 

kfUj<kj<Vj j"i       J — 

In order to estimate the second term on the right-hand side of (2.4), one shows first by 

(2.5) 

induction on s that 

IV"*.-V"».I*2 IVM 
whenever 0<*Yj, 6,s I for 1 sjs*. Consequently, 

(w.-u, + 1) ••• (w,-u.+ 1) U—!     a    * v(j) 
m 

VJ-UJ+\        ' 

*   I v,-u,+ I I 

J    * 
From the definition of u, and w, it follows that 

aJ*£<*J+m    and    ßJ'n*Z<ßJ 
so that 

»Wi-U.+ l        - I 1 
-*-=* ÖJi-«j)   < i   for I <]£ s. 

Therefore, 
(v,-u, + 1) ••• (».-«.+ 1) t 
Li—! i    * v(j) < i, 

m- '""I      m' 
and by combining this with (24) and (2.5), we arrive at 

«•0 

* 

z 
h mod m 

In view of (2.3), this inequality holds for all J, and by forming the supremum over J on the 

left-hand side, we obtain the desired inequality for DN. I 

The latter part of this proof indicates that it is somewhat unfair to use arbitrary intervals J 

when computing the discrepancy. The points <yn> lie on the coordinate lattice, and we may 

as well assume that J is an interval of the type [a^m, ft,/m) x ... x iajm, bjm). This 

assumption disposes of the term slm in the statement of Lemma 2.1. 

11 
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Lemma 2.2. For any integer m>2 we have 

h mod tn Z.riw <i*m*i> 
Proof. [Niederreiter78] Since 

it suffices to estimate the sum on the right-hand side. We have 

A mod m h mod m ft »1 

and by comparing sums with integrals we get 

[m/2] . lm/23 . -lm/2] 
Z,  CSC — -esc -•>iCSC-T £ esc - • I csc —-Ac 
n*i A*« 

Xn/2 
... it     m. n .       n     m,      2m .   csc f « • csc — •— log cot x— <csc— •— log —   . im m    n im m    n        n 

For m i6 we have (m/n) sin (n/m)* (6/n) sin (n/6), hence sin {nlm)i 3/m. This implies 

[m/z]       . . 
2) csc 5L < *logm*(g--log j)m     form*6, 

Aal 
and so 

[^2]        „An, 
X csc — < — log m • -F-      for m*6. 

it m   1 

This last inequality Is easily checked 'for m - 3, 4, and 5, so that 
SI 2 7 -7!—r < - log m • E      for m i 3. 

For m - 2, Lemma 2.2 is shown by inspection. I 

The papers {Niederreiter721 [Niederreiter74], and [Niederretter76] contain further theory 

of discrepancy and exponential sums. 
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Reduction to a Weaker Criterion 

CHAPTER S 

Reduction to a Weaker Criterion 

Chapter I introduced the linear recurrences we are investigating and gave some of the 

known results on the length of the period. Chapter 2 defined discrepancy as a measure of 

the distribution of a set of points and presented Niederreiter's lemma, which bounds the 

discrepancy by an exponential sum. Computing the exponential sum is straightforward but 

costly; even for small cases the amount of computation becomes prohibitive. Since we are 

interested in the exponential sum mainly as a bound on the discrepancy and hence as an 

Indicator of the goodness of the distribution of the sequence, in this Chapter S we bound 

the exponential sum by a function involving the number of zeroes occurring in a related 

sequence. The number of zeroes can be much larger than expected and the discrepancy of 

the original sequence will still approach zero. The question of equldistribution of the 

original sequence is thus reduced to a weaker distribution criterion. 

In the case of higher order congruences we cannot expect the discrepancy to be less than 

m"a, since some points are never generated by the recurrence; for example, no integer 

congruent to 6 mod 8 will ever appear in the Fibonacci sequence. The problem in proving 

small discrepancy lies in showing that the values which occur more often than expected do 

not occur too often. Intuition for this problem comes from considering recurrences based on 

primitive trinomials with unit coefficients and looking at the carries that occur when the 

addition in the recurrence is performed in radix-2 positional notation. The distribution of 

carries should say something about the distribution of the sequence. 

In order to study the relationship between carries and distribution of digits, let us consider 

the top 3 bits and the bottom 3 bits of <Fn mod 64>. The period of <Fn mod 8> is 12 and 
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Reduction to a Weaker Criterion 

the period of <F n mod 64> is 96. In the matrix formulation of Eqs. (1.3) and (1.4) we have 

A - (° [) and A12 - ( *J j£J) - 0 + s(JJ *J) - , + 8B Tak»"g the difference of two 

vectors 12 apart, we see that jt+12-}t - A ,2jt,-j, » (A,2-1)^ - 8Bjr and in general 

2i2j*«-*t " (A lZJ-l*t ' (0*8B)J-I)jt - (8JB+j.ti*4B2* •••&,• 8/Bj, mod 64 . (3.1) 

Breaking the period of <Fn mod 64> into 8 blocks of 12 and considering each block as a 

point in 12-space, the points are a + 8tb mod 64, where a, b_ « Z12 and Oitsf. The 

coordinates of a are the first 12 terms of <Fn mod 64>. The coordinates of b_ satisfy the 

Fibonacci recurrence bn - bn.y*bn.z mod 8, since they are the difference of two Fibonacci 

sequences. Here are two tables illustrating the relationship Implied by Eq. (3.1). The first 

gives <Fn mod 64> and the second gives <Fa mod 64> where <Fa> satisfies the Fibonacci 

recurrence, but with Initial conditions F0-2, F,-5. The entries in each table are octal 

integers. 

j 
0 
I 
2 
3 
4 
5 
6 
7 

t 0  1 

00 
20 
40 21 
60 71 
00 41 

Table I. Octal values of FiZJU mod 64 

01  01 
51  71 

3 

02 
42 

61 02 
51 42 

10  II 

03 05 10 15 25 42 67 31 
33 75 30 25 55 02 57 61 
63 65 50 35 05 42 47 II 
13 55 70 45 35 02 37 41 

41 02 43 45 10 55 65 42 27 71 
20  II  31 42 73 35 30 65 15 02 17 21 
40 61  21 02 23 25 50 75 45 42 07 51 
60 31  11 42 53 15 70 05 75 02 77 01 

20 50 70 40 30 70 20 10 30 40 70 30 row difference 

14 
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Table 2. Octal values of FX2JH mod 64 

t    0 10     II 
j 
0 
I 
2 
3 
4 
5 
6 
7 

02 05 07 14 23 37 62 21 03 24 27 53 
02 55 57 34 13 47 62 31 13 44 57 23 
02 25 27 54 03 57 62 41 23 64 07 73 
02 75 77 74 73 67 62 51 33 04 37 43 
02 45 47 14 63 77 62 61 43 24 67 13 
02 15 17 34 53 07 62 71 53 44 17 63 
02 65 67 54 43 17 62 01 63 64 47 33 
02 35 37 74 33 27 62 II 73 04 77 03 

00 50 50 20 70 10 00 10 10 20 30 50   row difference 

This observation can be applied directly to the evaluation of the sum in Niederreiter's 

Lemma. Let m - p**, <*„>- successive tuples of <yn mod m>, and N - length of one 

period mod m. Then 

AM N,£'x   f^*'1 N,£.'x 't*'1 

2<<*%#2a>- £    2*h'(<Lj+patbjHp2a). 2 «<4-fty^ao)2«<Ä-<fey^a)(s.2) 
JI«O j-o        t«o j-o «»o 

The inner sum is a geometric series with ratio e{h'bjpa). In fact, the sum is zero if h-b, * 0 

mod pa, and is pa if 4«fej - 0 mod pa. Also, the sum depends only on A mod pa, which is 

4mod nm. 

Next we observe that <£•}„> satisfies the same recurrence as <yn>.    To show this, let 

A-1 A-l A-1 

2 aj>'„*j - 2 aMn*j • *• 2 *ß»j - ton*k - y„*k <*s> 
J*0 J*0 J*0 

Furthermore, if jn contains an element relatively prime to p, and if s s *, the g.c.d. of <tt%n> 

is equal to the g.c.d. of &; that is, <h-%n> does not degenerate Into a sequence in which all 

elements are divisible by a power of p higher than the highest power of p dividing h. It 

suffices to prove the case for which the gc.d. of h is I. Extend 4 to a »-tuple (hQ, ..., 

hk_x) by adding l-j zero coordinates, and define the polynomial H(x) by 

H(x) - hjc0* • • • • Afc-i«**1 • Then the polynomial associated with <A%,> by Eq. (1.2) is 
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HU)V(x) (modd p, fix)) . In the field ZplxV(f{x)) both H{x) and Y(x) are nonzero, hence 

their (iiucltKt is also nonzero, Therefore p does not divide all of the coefficients of 

//(.v)i'(.v) and thus <*•>„> contains an element relatively prime to p. The foregoing 

observations about <£•?„> allow us to get rid of vector operations and return to plain 

integer sequences.   L.et a, <= h>a,, b. - hb., yn * h>y;n. Then 

N-\ W-1 Nlpa-\ pa\ 

2 tbijp**) • 2 '<?>2rt> •  2 tb'jip**) 2 Wjipa) CM) 
n-0 n-0 J'O t'O 

I hr full sum. and hence an estimate of the discrepancy for sequences which are 2a bits 

wide, depends on the occurrences of 0 in <b,>, which is only a bits wide. Again we note 

that the inner sum is a geometric series with a term ratio of t(bjpa), and its sum is 0 if 

b'j i 0 mod pa or pa if ftj H 0 mod pa. Therefore 

N/P
a-i pn-\ Nlpa-\ 

2 c(<i\ip?a) 2 <ey/>a) 'pa    2    ^y/»20) <s.s) 
J'O t'O J'O 

b.B 0 mod pP 

Taking the absolute value, 

Nlpa-\ N,l£~l 

\pa      2      4fi/P*)\SpP      2       I 
J'O J'O 

bj • 0 mod pa b j £ 0 mod p° 

• pa-(number of zeroes in <b. mod ^a>). (3.6) 

I he number of zeroes in <bj mod pa> will be large if a high power of p divides h, since 

b, * h-b,. To analyze this situation, let us go back to the original exponential sum of 

Niederreifer's lemma and choose m • pa. Set 

5(a)-     2       -i— 
tmodp^^P^ 

I 
2   <U>'*JPa) (37) 

r(pa)    n-0 

where   T</>a)   is   the   period   modulo   pa,   and   let   a0   be   an   exponent   for   which 
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T(pa°*J) - pJr(pa°) for all;20.  Then for a>ac 

5(a)- S £ 

 I  

»mod^     ?{ad)r(älpa-d,palpa-d) 

T(pa)-1 

2   K4*^"> 

2     2 

Ttya)     it"0 

T(pa)-1 

-~ S *äipa-d*nnpaipa-d)) 
r(pa)    n-0 

«cd(ft) = p«-«* 

rt 

1-a0 h mod p" r(2' P > 

T(pd) 

T<p ) /i-o 
£<-<*(/») - 1 

Thus (or or >or, 

.S(a) = /)-5S(n-l)+      £ I 

«cd(/i) - 1 

T(pn)-1 

r(pa)    n-0 
(38) 

Collapsing; the chain of inequalities back to the statement of Niederreiter's lemma, for 

a>a0 

„ .    s       5(2rt-l) v | 
T{P    I      .Za ts -   ,/* A2m 

P P hmodpto^'P     ) 

I  n£!') 

*ed(ft) . 1 

Up**)     n-0 

-     j        S(2a- I) ^« I #*    , _. 
< -—- • ;— •      2J ST" '—^—-(number of leroes In <b, mod pa>). (3 9) 

P?Ct f >JZ >«"*.&    T(^) ' r* h mod p 
'gcd(h) - 1 

For ot>ni0 the g.c.d. of the components of bj Is I, by Lemma 1.4. Thus by an earlier 

rcmaik the g.c.d. of the <bj> is I, because I, - h-bj and the sum (3.9) is restricted to those h 

for which g.cd (A) - I. Replacing the number of zeroes in <b\ mod pa> by the maximum 

number of retoes in a nondegenerate cycle mod pa and applying the bound of Lemma 22 
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gives 

„     s       S(2a-\) 

(c,2»)*' -  ' (maximum number of zeroes in nondegenerate cycle mod p") . (3.10) 

for some r, which depends on /> but not on a. Remembering that T(/>2a) is proportional to 

p?a, we see that the discrepancy in $sk dimensions will approach zero if the maximum 

number of zriors in a cycle modulo pa is o(a'spa). This is a very weak condition. If the 

elements of the cycle are evenly distributed then the expected number of zeroes is a 

constant. Equation 3.10 shows that the discrepancy will tend to zero even if the number of 

zrioes in a cycle is exponentially increasing, as long as the rate of increase is  p-t  for some 
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Analysis of the Number of Zeroes in a Cycle 

CHAPTER 4 

Analysis of the Number of Zeroes in a Cycle 

The result of Chapter 3 expresses a bound on the discrepancy in terms of the number of 

zeroes occurring in sequences satisfying the recurrence. (See [Hall38b] for an early 

application of a similar bound.) In this chapter we will investigate the number of zeroes 

appearing in any cycle, and try to bound it from above by a function which is small 

enough to force the discrepancy to zero as the modulus increases. 

For the Fibonacci sequence modulo 2a the bound Is particularly small. 

Theorem 4.1.    At most two zeroes appear in a cycle satisfying the Fibonacci recurrence 

>n*2 s ?ir»i +?n modu,° 2° when y0 and j», are relatively prime. 

Proof. If a zero appears at all then shift the cycle so that the zero is the first element. 

Then y0 = 0, yy s a, and a must be odd since y0 and yx are relatively prime. Thus the 

cycle is merely a multiple of the Fibonacci sequence, where y0 - 0, j, - I. Modulo 8 the 

Fibonacci sequence Is 01 123505527 1. By inspection there is one zero mod 2, one 

zero mod 4, and there are two zeroes mod 8. We will show by induction that 

/F3.2*3-2 - 2°? and F&ga-z. t - I+8* f where aiS and q, r are odd integers. This is 

true by inspection for a - 3. Assume that it is true for a - J. Then using the relations 

'«••I " ^•^•! a"d F2n-F„(2Ftttl-F,) we have F^j-x - ^«l^^r-^q) 

and ^3.^-1, , - I + 2,/r + 22,/"2r2 + 22V. which is the property for a -j+ I. Therefore the 

period doubles and the number of zeroes remains constant as the modulus doubles.  I 

We can use this fact to estimate the discrepancy in two dimensions of a complete cycle of 

the Fibonacci sequence modulo 2°.   Assume that 5(a) <cot82*a/2 In the notation of Eq. 
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Analysis of the Number of Zeroes in a Cycle 

(3.8).        For    a>t    we   have    7/5 + (2/n)log 2a<1og 2a.       By    Eq.    (3.9),   S(a+l)s 

2-2S(a) + 2«21/2(a+ |)2
2-(a+,)/2 - ca22-a/2"2 + (a+!)223/2 "<a+,)/2 

c(a+ I)22-(aM)/2 ( 2"3/2( JLf*e'hm ) < c{a+ l)22-(a+1)/2 if c>8/<23/2- 1).    If we a+1 
also select c large enough so that 5(6) satisfies the inequality then a simple induction will 

establish the bound for or*6. Therefore DNs2i~a + ca22~a,z. 

For recurrences of higher degree than the Fibonacci sequence, the number of zeroes in a 

cycle can increase as the modulus increases. 

Theorem 4.2. If A>2 and a*ot0 then the maximum number of zeroes in a nondegenerate 

cycle modulo />2a is at least pa. 

Proof.   Construct * initial elements j0, .... yk.x as follows.  Set y0 m 0 mod £2a.  Choose 

yx yk.x mod pa so that e,Bj0 s 0 mod pa, where B is the matrix defined in Eq. (1.4) 

and «, - (I, 0, 0, ..., 0) is a unit vector with a I in the first coordinate. Since y0 has been 

specified, the constraint on yx yk,x is one equation in ik- 1 unknowns.   For A - 2 (as 

in the Fibonacci sequence), yx would have to be 0 mod pa and g.c.d.(y0, yx) would be pa. 

For k > 2, well-known methods guarantee the existence of a nontrivial solution for yx, ..., 

yk.x. It is easy to see that yJ7 = txA
J7y0 = «i(I+#aB)z0 s g,-j0+ tJp^Xo s 0 mod 

p20 for 0<j<pa and that y^ are distinct elements of a cycle modulo pZa. I 

In order to obtain a good bound on the discrepancy, it is necessary to show that, as the 

modulus goes from pa to pa*x, the number of zeroes increases by a factor which is 

eventually less than p. We will try to show that the number of zeroes eventually increases 

at a rate no faster than ^<A"2)/(*"1>( where * is the degree of the recurrence. 

The fundamental idea will be counting in two different ways the total number of zeroes In 

the cycles corresponding to all of the possible initial conditions.   Consider a large tabular 
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array in which each cycle appears as a row. The first column of the array contains the first 

element of each cycle; the second column is composed of the second element from each cycle, 

and so on. Let bj be the number of zeroes in the f* row of the array. Then 2 ( /) 

counts the number of (-tuples of zeroes in the array, with alt elements of a tuple required to 

appear in the same row. The number of (-tuples of zeroes can be counted another way. 

For each (-tuple of column indices, count the number of rows which have zeroes in all of 

those ( columns. Since the two methods of counting must agree, a bound achieved by 

considering one counting method can be applied to the other counting method. 

To count the zeroes appearing in all of the cycles, we must first know how many cycles 

there are. Each cycle is determined by its first k elements and each element can take on pa 

values, so there are pak possible cycles. Some of these cycles are isomorphic under cyclic 

shift, and of course the number of zeroes in cycles which are cyclic shifts of one another is 

the same. To reduce our counting effort by applying knowledge of the isomorphism, we 

should divide by the period. A cycle in which all the elements are divisible by p has a 

shorter period than a cycle containing an element relatively prime to p, so it is necessary to 

count the cycles according to the highest power of p dividing all elements. Let a, be the 

number of cycles for which pJ is this highest power. Then by counting all the cycles we 

have a0+ ax + • • • +oa - pak. If pa is large enough so that the period is multiplied by p 

as the modulus increases from pa to pa * , then by considering what happens when the 

zero unit's digit is removed from a cycle in which all the elements are divisible by p, we see 

that a, + • • • +aa - p
(a'i)k. Thus a0 - pPk-ptomi>k - (pk- l)£<a-,)\ Considering 

only those cycles containing an element relatively prime to p and allowing for cyclic shifts, 

there are (pk- \)p{a-l)kl(pk - |ty«-,-(e-,> . c,f(a-,)(*-,) cycles. 

Some of these cycles are Isomorphic under multiplication by a number prime to p. Cycles 

which are multiples of each other have the same number of zeroes. In fact, a cycle may be 

non-trivial!y isomorphic to Itself under such a multiplication.    For instance, in the 
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Fibonacci sequence modulo 8 the second half cycle 0 5 5 2 7 1 is 5 times the first half 

cycle 0 112 3 5. In this situation the number 5 is called a multiplier. If a cycle has a 

multiplier then obviously the number of zeroes in the cycle is a multiple of the number of 

zeroes appearing in the first partial cycle, which is called a block [Ward33]. Multipliers 

complicate some of the later analyses. Any constant number of multipliers can be tolerated, 

but it is preferable not to deal with multipliers at all. Therefore we must be able to detect 

when a cycle has a multiplier. 

Suppose that a is a multiplier after n iterations of the recurrence, i.e., yn s ay0, vn+1 = ayv 

....   Let g{x) be the polynomial corresponding to the initial conditions (y0, yv  •••,?*.])• 

Then 

x"g(x) = ag(x) (modd pa, fix)) 

Un-a)g(x) s 0 {modd pa, fix)) 

(xB-a)g{x) - f{x)u{x)+ pav(x)    for some u(x), v(x). 

Since j{x) is primitive in Zp[x], either fix) divides xn-a or fix) and x"-a are relatively 

prime.  Suppose they are relatively prime. Then by Hensel's Lemma we can find c(x), d(x) 

such that (x"-a)c{x)*ßyc)d{x) s I mod pa. Multiplying by g(x) we find 

(x"-a)g(x)c{x)+j{x)g(x)d{x) = g(x) mod pa 

/<x)u<x)c<x)+ pav(x)c(x)+J(x)g<x)d(x) s g(x) mod pa 

0 *g(x) (modd pa, fix)). 

Thus a would be a multiplier for the trivial cycle (0) only. Consider the other possibility, 

that fix) divides xn-a in Zp[x] so that x" • a (modd p, flx)). The multiplier a must be 

relatively prime to p or else the recurrence could be run backwards to deduce that all of the 

initial values were non-prime to p. Let j be the order of a mod p. Then xJn s aJ s 1 

(modd p, ßx)). Thus r(p) divides Jn. Noting that p- I divides pk- I and that J divides 

p- I, we have r(p)l(p-\) divides n. Specializing to p - 2, T(2) divides n. If we consider 

the case in which n ts the smallest number of iterations producing a multiplier then n 
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divides T(^a). For p - 2 these two divisibility conditions restrict n to the form 2°"e(2*- I), 

and thus a is a 2J root of unity for some j. The powers a2, a4, a8, ... must also be 

multipliers, and in particular one of the square roots of I must be a multiplier. The square 

roots of I mod 2° are +1, -I, 2a"1+l, and 20t"1-l. The case of +1 is trivial. If -1 or 

2a",-l were a multiplier, it would correspond to 2",T(2a) - T(2a"1) iterations, 

contradicting the known period mod 2a*,. Therefore 2a"1+l must be a multiplier 

corresponding to one-half the period. In matrix formulation of Eq. (1.3) and (1.4), 

AT/2xS(2a'l+l)xmod2a 

(2°",B + I)£ = (2a"1 + I)* mod 2° 

2a"1(B-I)xs0mod2a 

Thus B-I is singular mod 2. For recurrences of moderate degree this is not hard to 

determine. In the nonsingular cases there can be no multipliers. 

Back to considering cycles isomorphic under multiplication by a number relatively prime to 

p, we now assume that the recurrence itself has no multipliers. We can divide the number 

of cycles by 4(pa), which in the case p - 2 leaves e^*"0**"0/^"1 - ^«-»K***) cycies 

containing an odd element and non-isomorphic under cyclic shift and multiplication by a 

constant. 

Knowing the total number of cycles, we begin counting the zeroes by counting the rows 

which have zeroes in specified columns. 

Theorem 4.3 [Hatl38a]. There exists a sequence <yn> satisfying the recurrence (I.I) and not 

identically zero modulo pa for which j„iO mod pa for * - I arbitrary values of n. 

Proof. Let    the    arbitrary    values    of    n    be    n,,     ....    nk.v Write 

<y„> - <c0wn+cxwn.%+ ••• +e*.|n'»*«-i> wnere *"»* ,$ tne un,t »«quence with initial 

conditions (0, 0,  .... 0, I) and the e's are to be determined by the A-1 congruences 

23 

     --       ••••• -—    - - 



Analysis of the Number of Zeroes in a Cycle 

yn   syn   = ••• syn      mod pa . These are * - 1 homogeneous linear congruences in the 

ft variables c0 cA, so there must exist a solution in which not all the e's vanish and yn 

does not vanish identically. I 

Thus at least one cycle has zeroes for each set of * 1 arbitrary positions. To calculate the 

exact number of cycles having zeroes in the specified positions, we need to know the rank 

of the coefficient matrix. Suppose that the rank was ft-1. Then there would be one free 

parameter in the solution set and the number of solutions would be proportional to pa as a 

varied. Varying the parameter would merely generate a solution which was a multiple of 

the previous solution, so that the corresponding cycles would also be multiples of each 

other. Thus if the rank of the coefficient matrix was ft - I then there would be a constant 

number of cycles having zeroes in the designated columns. To take advantage of the cyclic 

shift isomorphism, we can demand that first column be one of the columns containing a 

zero. This leaves ft-2 other columns which can be specified, so altogether the number of 

systems of simultaneous homogeneous linear equations we are considering is proportional to 

pa(k-z)   We haye seen tnat {f tne coefficient matrices are of rank ft- I then each system 

corresponds to a constant number of cycles. Letting bj be the number of zeroes in the jth 

row, this argument shows that J) (. ^)sc,^a(**2\ where the sum is over nondegenerate 

cycles with a zero in the first position. This implies that 6*'1 sc2pa(*"2) for each J, and 

hence the maximum number of zeroes in a cycle mod pa would be. bounded by 

c3^a(*"2)/(A"*' for some constants cr cs This bound is good enough to force the 

discrepancy to zero as a increases. 

For recurrences of degree 3 that have no multipliers, the coefficient matrix is of rank 

2 - ft - I. The rank cannot be zero because no ft consecutive terms vanish, and If the rank 

were I then the second row would be a multiple of the first. Hence the preceding argument 

proves the following theorem. 
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Analysis of the Number of Zeroes in a Cycle 

Theorem 4.4. If f{x) is a primitive polynomial of degree 3 in Z_[x] then the discrepancy 

over an entire period of (-tuples generated by (I.I) tends to zero as a tends to infinity, for 

tsX 

The cases in which the coefficient matrix determined by the ft -1 column positions is of 

rank k-\-t for (>0 generate a number of essentially distinct cycles proportional to pat. 

Since the matrix is not of full rank there is some non-trivial linear combination of the rows 

which is the zero vector. Using the isomorphism (1.2) between sequences and polynomials, 

the same non-trivial linear combination of the powers of x corresponding to the designated 

column positions must be the zero polynomial modd pa,J{x). This means that we are now 

interested in the number of polynomials with ft-t terms (one of which is the constant term 

c0x°) which are congruent to zero modd pa,f{x). We can choose k-t-1 exponents of x 

from a number of possible exponents proportional to pa. The coefficient for each of the 

k -1 terms can be chosen in pa ways, but this gives pa times too many choices because of 

constant multiples. Thus the number of polynomials to consider is proportional to 

^a(A-i-iy(*-«yo m p2a{k-t-\)   ,f (hese po|ynomla|$ were evenly distributed among the 

pak residue classes modd pa,ß>*) then the probable number of polynomials congruent to 

zero would be ^a**"2'"2^ anC| the number of (A-1) tuples of zeroes would be proportional 

to pa(**t'2). Summing for t from 0 to k -2 gives a number proportional to pa<*"2) and 

therefore b^c^'2^^. 

Another way to attack the problem of bounding the maximum number of zeroes in a cycle 

modulo pa uses the matrix formulation of the recurrence. Let A be the matrix (1.3). 

Assume that a is large enough so that the period is multiplied by p as a increases by I, 

and that yn • 0 mod pa. Let T - T(pa) be the period mod pa, let j - (?„, .... Jn*A.,)T 

be the «-tuple of residues at y^ let B be the matrix (1.4) so that A7 - I + paB, and let 

I - (!„, .... zB4A.,)T - Bj. Let pa*'Hyn and pJ\\x„. If l<j then modulo pa*J* ' there 

will be no zeroes with indices congruent to n modulo r(pa).   If izj then as a increases 
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Analysis of the Number of Zeroes in a Cycle 

there will eventually be (p- \)pJ zeroes in each period with indices congruent to n modulo 

T(pa). This shows that, given any initial conditions over the integers, the number of zeroes 

in a cycle generated from those initial conditions will eventually be a constant. The 

problem is that as the modulus increases the sets of initial conditions which are allowed 

also varies; the number of zeroes in a cycle converges pointwise (for each set of initial 

values over the integers), but the question of uniform behavior is as yet unanswered. 

Establishing a nontrivial bound on the number of zeroes in a period of a recurrence 

satisfying (I.I) is a worthwhile future project. Any bound which is o(a~kpa) can be used 

in Eq. (3.10) to show that the discrepancy of a full period of ft-tuples tends to zero as or 

tends to infinity. The conjecture below might possibly be proved by establishing suitable 

bounds on the distribution among the residue classes modd pa,ßx) of polynomials with k 

or fewer terms and degree less than 7(pa), or by other means. 

Conjecture 4.1. The maximum number of zeroes in a nondegenerate period of a recurrence 

generated by Eq. (I.I) is less than cp<*l*'zWk'l> for some c depending on p and k but not 

on or. 
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Practical Considerations 

CHAPTER 5 

Practical Considerations 

In Chapter 4 we saw indications that, when considered over an entire cycle, the tuples of 

residues probably become equidistributed as the recurrence is computed with more and 

more bits. In any practical situation only a moderately large, fixed number of bits are used; 

most current machines use from 24 to 48 bits to store the fraction of a single-precision 

floating-point number. Even so, it is highly unlikely that an entire period will ever be 

used. Choosing p - 2, a - 24, and k > 50 implies a period of about 270. which is in the 

range of the total number of states that all the computers in the world have ever been in 

(220 machines • 26 years • 228 seconds/year • 220 states/machine-second). A truly random 

sequence is locally non-random in some places; such places should not occur frequently in 

the portions of a computer-generated sequence which are likely to be used. To be 

recommended for general use, a random number generator must be efficient and easy to 

implement on a variety of machines. This chapter addresses these practical considerations 

and presents the results of comparisons with a standard linear congruential generator 

Ji.»i-aJn+6mod2a 

A random number generator based on recurrence (I.I) can be efficiently implemented. 

Only the * most recent values of y need to be remembered, and these can be stored in an 

array which is accessed cyclically. The number of arithmetic operations involved can be 

minimized by choosing J{x) to be a primitive trinomial modulo 2. (Some primitive 

polynomials mod 2 have been tabulated in [Watson62] and [Zierler68l) If fix) is chosen in 

this way then the recurrence is yn • ±jH.j *JB-* "*** 2°- wnlcn requires no multiplication 

or division, only one addition or subtraction, and one reduction modulo 2a.    Many 
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applications require only the fractions yJ2°. These fractions can be computed exactly in 

floating-point arithmetic without intermediate integer computation and conversion. This is 

done by dividing each term of the recurrence by 2°, so that the computation is done in 

floating-point numbers modulo I. It is necessary to prevent any floating-point operation 

from generating a result greater than 1.0, which would involve a right shift of the fraction 

part and the possibility of losing one bit, making the computation no longer exact. This 

can be insured by choosing the signs so that f(x) - xk-xk'J+ I and the recurrence is 

yn - y„.j-y„.k mod 2°. This is allowed because +1 • -1 mod 2 and therefore xk-xk~J+ 1 

is the same polynomial in Z2 as xk + xk~J+ I. If the subtraction y„.jl79 - Ja^flP produces 

a negative result then we add 1.0 to bring the value back into the range 0<yJ2a< I. 

When performing this addition we must remember to actually perform two additions of 0.5 

in order to guarantee that no bits will be lost. (Computers such as the Control Data 

Corporation 6000 series effectively do not use any guard digits and hence one bit can be 

lost when preshifting yJ2? to align the radix point before the addition.) 

To illustrate the fact that a random number generator based on (I.I) can be implemented 

with little machine dependence, here is a coding in FORTRAN of a generator based on 

x66-x31 + I mod 2. Each time XRAND is called it returns the next random number. 

FUNCTION XRAND 
COMMON /XRAN0X7 I,  J,  X155) 
DATA  I  /S5/ 
I   - I  -1 
IF   (I   .LE.  8)   I  - 55 
J -  I  - 31 
IF   (J .LE.  9)  J - J + 55 
X(l)   - X(l)  - X(J) 
IF (xm .IT. e.8) xm - <xu> + e.si + e.s 
XRAND - X(l> 
RETURN 
END 

The machine dependence lies in the initialization of the first 55 values of the array X. The 

initial values must be chosen so that OsXU) < I, 2aX(l) Is an integer, and 2aX(I) must 
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Practical Considerations 

be odd for at least one value of I. One way to do this is to set X (1) - I/2a and X(I) - 0 

for 2s I < 55. However, this puts one of the local non-random areas at the start of the 

generated sequence. It would be better to run the recurrence a million times (say), write out 

the values of X (I), and have some other routine place these values into X before using 

XRAND. Alternatively, an auxiliary linear congruential generator can supply the initial 

values; see [Brent73]. 

The efficiency of generator XRAND compares favorably with that of standard first-order 

linear congruential generators. On the Digital Equipment Corporation PDP-IO, XRANO can 

be encoded in 12 instructions, while a standard generator requires 10 instructions. (The 

number of instructions is for a routine which returns a floating-point value between 0 and 

1, is guaranteed to not cause any Interrupts, and includes the normal subroutine linkage.) 

Execution time per call on a KL-10 processor is approximately equal because XRAND uses 

no multiplication. On the IBM S/370, comparable encodings are 16 instructions (46 bytes) 

for XRAND and 10 instructions (27 bytes) for a first-order generator. 

Four generators were compared using several tests. The generators were 

RANDU: yn - (2
16+ 3^., mod 23\ y0 - I. This generator is notorious for its 

bad distribution in three dimensions. 

GOODLC: yn - 3l4l592653yn.1 + 27l828l829 mod 236, j0 - 0. This is a standard 

"linear congruential" generator. 

ADDLC: y„ - y„.66-yn.24 mod 227. J0 - • • • - yB9 - 0, yB4 - I. The tests began 

with y0 - ?66636- This is an additive generator based on the primitive polynomial 

x56-x3t+l mod 2. 

BESTX: yn*x„ XOR *„ where x„ - (3141592653xn_,+ 2718281829) mod 236, 

x0 - 0. tn - 3l4l59270zn., mod (2M-3I), and x0 - I. The number 236-3l is the 
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Practical Considerations 

largest prime less than 236, and 314159270 is a primitive root. Here XOR is the 

exclusive-or bit operation. 

These generators were compared under the following tests. (See [Knuth69] sec. 3.3.2.) 

ID: A one-dimensional distribution test with the interval [0,1) divided into 4096 

equal subintervals, and 8 hits expected in each subinterval. 

2D: A two-dimensional distribution test with the interval [0,1) x [0,1) divided into 

64 x 64 equal subintervals, and 8 hits expected in each subinterval. The ordered 

pairs used for the test were non-overlapping, I.e., (y0, yt), (y2, y3)  

3D. A three-dimensional distribution test with the interval [0,1) x [0,1) x [0,1) 

divided into 16 x 16 x 16 equal subintervals, and 5 hits expected in each 

subinterval.  The ordered triples used for test were (jq, yv yz), (y3, yA, y6)  

GAP:   A test which considers the length of consecutive subsequences j„ y,^v  • •. 

yJtr in which 0saiyJtr<ß< 1 for two fixed real numbers a and (3, but the other 

y$ do not. This test was performed with a - 0, ß - 0.5, and thus was a test of "runs 

above the mean".   Gaps of length 0 through 5 and gaps of length greater than 5 

were counted until 500 gaps had been tabulated. 

MAX 10: The maximum element of blocks of 10 consecutive values was selected 

until 1500 maxima had been chosen. The distribution of the maxima was tested 

against the theoretical distribution function z>0 by the Kolmogorov-Smimov test. 

RUN: The     length     r     of     consecutive     subsequences     for     which 

Jj>yj*\> "' yJj*T-Jj*r*\ wa$ 'aDU'*l*d until 500 runs had occurred. New runs 

were started at y ,+r+2, and runs of length 5 or more were grouped together for the 

analysis. 

PER MUT.    The order relations among consecutive blocks of 4  values were 
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tabluated, with each of the 24 possible ordering* expected to occur 150 times. 

Except for the test MAX 10, where the Kolmogorov-Smirnov (KS) test was used, the 

chi-squared statistic was calculated using the appropriate probabilities. Exceptions to the 

expected distribution were counted when the calculated statistic lay in the 5f tail at either 

end of the theoretical distribution. Thus a perfectly random sequence would be expected to 

fail lot of the tests in each category. The chi-squared values themselves were tested in 

groups of 16 by the KS test (both KS+ and KS- tests) against the hypothesis that they 

came from a chi-square distribution. Exceptions were noted for the 5t tails at both ends of 

the KS distribution. 
i 

Each test was repeated until a conveniently large percentage of the first 3*2*° values of 

each generator had been tested. The following tables summarize the results. 

Table 3. Results of tests on RANDU 

test repetitions ±5t tails KS tests KS ±5* tails 
ID 96 12 12 3 
2D 48 5 6 1 
3D 48 48 6 6 
MAXI0 384 50 
GAP 192 20 24 4 
RUN 192 26 24 6 
PERMUT 192 II 24 0 

Table 4.  Results of tests on COODLC 

test repetitions ±5X tails KS tests KS ±51 tails 
ID 96 10 12 3 
2D 48 5 6 1 
3D 48 4 6 0 
MAXIO 384 39 
CAP 192 19 24 2 
RUN 192 29 24 9 
PERMUT 192 20 24 2 
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Table 5. Results of tests on ADDLC 

test repetitions ± 57. tails KS tests KS ±5* tails 
ID 96 13 12 0 
2D 48 6 6 0 
3D 48 5 6 0 
MAXIO 384 34 
GAP 192 19 24 3 
RUN 192 29 24 8 
PERMUT 192 17 24 S 

Table 6. Results of tests on BESTX 

test repetitions ± 5« tails KS tests KS ±5« tails 
ID 96 15 12 0 
2D 48 6 6 1 
3D 48 3 6 0 
MAXIO 384 41 
GAP 192 16 24 3 
RUN 192 21 24 12 
PERMUT 192 13 24 0 

The tests confirm the bad three-dimensional distribution of the values generated by 

RANDU. All generators had difficulty with the RUN test The code for this test was 

carefully examined for systematic errors, bet none were found. The exceptional chi-square 

values tended to be extremely small (less than 1.0) or Just above the upper 5* tall cutoff. 

Generator ADDLC compares favorably with GOODLC and BESTX in these tests. To 

the extent that this testing procedure is valid for a particular task requiring random 

numbers, ADDLC can be recommended as an acceptable generator. 

•• 
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